用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

公司新闻

如何使用大数据分析(如何使用大数据分析帮助企业更好把握市场动态)

时间:2025-03-11

最常用的四种大数据分析方法有哪些?

描述性分析:这种方法主要对已收集到的数据进行总结和归纳,展示数据的基本特征和趋势,如平均值、中位数、模式和频率等。描述性分析帮助我们理解过去和现在的情况,为大数据分析提供基础。

描述型分析:发生了什么?这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是描述型分析方法之一。

对比思维 对比法是通过将两组或两组以上的数据进行比较,是最常用的数据分析方法。它帮助我们理解孤立数据背后的意义,并通过比较来揭示数据间的差异。例如,我们可以通过比较不同时间点的数据(同比和环比)来衡量增长速度,或者通过与竞争对手的数据对比来评估自身的表现。

大数据分析主要可以分为四种类型,即描述性分析、诊断性分析、预测性分析和规范性分析。首先,描述性分析是大数据分析中最基本的一种类型。它主要是将大数据集中的数据进行整理和简化,将其转化为人们更容易理解的形式。

综合分析方法 综合分析则是指使用各种统计和财务综合指标来研究和反馈社会经济现象的总特征及其数量关系的方法。这些数据分析方法与模型在企业经营、管理和投资决策中极为常用,对于银行业务和投资决策等方面发挥着至关重要的作用。

Analytic Visualizations(可视化分析)不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。

如何学会利用大数据?

1、让数据看的懂 采集来的原始数据难以读懂,因此还需要进行集中化、结构化、标准化处理,让天书转变为看得懂的信息。

2、【互联网很强大】利用网络资源去学习,网络时代,各种网络视频教学平台都有资料、信息,只有跟上时代节奏,才不会落伍。5/10 【乐于操作、沉得下来】如果你学习大数据沉不下来,建议你别学,因为这需要很大的耐心,去处理、分析、解决大量的数据,需要不断去思考,沉得下来,才能进步。

3、利用所有的数据,而不再仅仅依靠部分数据,而是全体数据。多角度考虑,多角度猜想。利用大数据多样性,发散思维。并非所有的事情都必须知道现象背后的原因,即因果关系,而应注重相关关系。确定其真实性,虚假的数据固不可取,不说会让你犯下大错误,至少会让你的工作白费时间。

4、\x0d\x0a本阶段推荐书籍有二:《深入浅出统计学》《统计学:从数据到结论》,要了解常用数理统计模型(描述统计指标、聚类、决策树、贝叶斯分类、回归等),重点放在学习模型的工作原理、输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。

5、舍恩伯格指出,“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户”。

6、当然也可以选择用Python。Python语言:编写一些脚本时会用到。Allluxio,Kylin等:通过对存储的数据进行预处理,加快运算速度的工具。以上大致就把整个大数据生态里面用到的工具所解决的问题列举了一遍,知道了他们为什么而出现或者说出现是为了解决什么问题,进行学习的时候就有的放矢了。

在大数据时代下电子商务数据分析如何进行?

1、制造类企业或服务类企业解决了原来个性化需求和大规模制造之间的矛盾,提供更有效的解决方案。在大规模定制的情况下,下一步电子商务平台可能会成为所有制造类和服务类企业的整合者,也就成为标准的制定者。

2、大数据时代下我国电子商务的发展机遇与挑战_数据分析师考试 大数据时代已经到来,认同这一判断的人越来越多。随着物联网、云计算、移动互联网等新技术的发展,手机、平板电脑、PC以及遍布地球各个角落的传感器,将成为大数据来源和承载方式。

3、电子商务在大数据时代下的“包容性增长”随着企业处理的数据量越来越大,数据处理工具的智能化程度越来越高,处理速度越来越快,价格也越来越实惠。大数据分析不仅仅是一种趋势,而是许多大型电子商务公司必不可少的一项工作内容。